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Abstract

A newly developed spectral compressible linear

stability code (SPECLS) using a staggered pressure

mesh for analysis of shear flow stability is presented

and applied to high-speed boundary layers and free

shear flows. The formulation is the first application

of a staggered mesh for a compressible flow anal-

ysis by a spectral technique. For equivalent accu-
racy of growth rates, an order of magnitude fewer

points are needed by SPECLS than by a finite dif-

ference formulation. Supersonic disturbances, which

are found to have highly oscillatory structures, have

been resolved by a spectral multi-domain discretiza-

tion, which requires a factor of three fewer points

than the single-domain spectral stability code. The

study indicates, as expected, that stability of mixing

layers is enhanced by viscosity and increasing Mach

number. The mean flow involves a jet being injected

into a quiescent gas. Higher temperatures of the in-

jected gas also enhance stability characteristics of the

free shear layer.

Introduction

There is an enduring interest in the linear sta-
bility of shear flows. It can be attributed to the

fact that currently this theory (used in conjunction
with some semiempirical procedure such as an N-

factor method) is virtually the only means of pre-
dicting the location of flow transition or indeed of

determining whether a given laminar shear flow will

become turbulent or not. At the present time, there

is no prospect of a unified theory of transition even in

low-speed flows (where some of the underlying mech-

anisms are relatively well-known), let alone in hy-
personic flows. In view of the National Aero-Space

Plane Project, the study of laminar-turbulent transi-

tion in supersonic and hypersonic flows has become

extremely important.

As a short-term goal, it is imperative then to

obtain linear stability results that account for fac-

tors such as body curvature, three-dimensional mean
states, shocks, and real gas effects. The implicit as-

sumption is that supersonic and hypersonic transi-

tion has its origin in linear instability and is not

overly sensitive to details of the disturbance en-

vironment (not that Morkovin's bypasses (ref. 1),

i.e., when flow transition occurs without any ini-

tial linear instabilities, are inapplicable to the hy-

personic regime). Clearly, as Mack (ref. 2) points

out, efficient, accurate, and robust linear stability
codes are needed for use in a large number of design
calculations.

This is the motivation behind the present work,

which presents the first spectral compressible linear

stability code (SPECLS) to solve the linearized

Navier-Stokes equations. The newly developed pres-

sure staggered mesh is shown to perform very well

for spectral solutions to compressible flow problems.

Spectral methods are known to yield highly accurate

results using fewer grid points than finite difference

formulations (refs. 3 and 4). In this study, results
are presented to further substantiate this claim. In

addition, a multi-domain spectral discretization in

SPECLS (ref. 5) presented here deals economically

with complex flows, which can include such features

as multiple interior shear layers. The method is ver-

ified by comparison of results for boundary layers

from an existing finite difference compressible linear

stability code and by comparison with analytical re-
sults obtained for free shear flows.

Symbols

A

B

C

61,62,63

Cp

D

D

E

ei*j

G

I

L

M

Mc

P

matrix coefficients for second-

derivative operators from equa-

tions (14) to (18)

matrix coefficients for first-

derivative operators from equa-

tions (14) to (18)

matrix coefficients for zeroth-

derivative operators from equa-

tions (14) to (18)

adjustable constants for grid

stretching function, equations (21)

and (22)

specific heat at constant pressure

matrix coefficient for first-derivative

operator premultiplied by w

differentiation with respect to y

matrix coefficient for zeroth-

derivative operator premultiplied

by

dimensional viscous stress tensor

defined in equation (5)

quantity that determines flow

character, defined in equation (33)

spectral interpolation operator

spectral differentiation operator

Mach number

critical Mach number

mean flow pressure plus pressure

perturbation

pressure perturbation



Po

q+

q-

R*

Re

t _

T

%

To

TI

T2

U

u_

Uo

13

Vo

W

(v

wo

X

Y

yc

YYII ax

Yp

time-dependent dimensional

pressure

mean flow pressure

= _ + _.

gas constant

Reynolds number based on displace-
ment thickness

dimensional time

mean flow temperature plus temper-

ature perturbation

free-stream temperature; equivalent

to T1

mean flow temperature

free-stream temperature of injected

gas

free-stream temperature of quies-

cent gas

streamwise mean flow plus pertur-

bation velocity

streamwise complex disturbance of

velocity

mainstream velocity

mean flow streamwise velocity

normal mean flow plus perturbation

velocity

normal complex disturbance of

velocity

mean flow normal velocity

spanwise mean flow plus perturba-

tion velocity

spanwise complex disturbance of

velocity

mean flow spanwise velocity

streamwise coordinate

normal coordinate

computational coordinate in the
normal direction

maximum extent of normal

coordinate

normal coordinate in physical space

Z

0¢

_T

6"

A

tz

l.Se

Po

O"

¢

CO

Subscripts:

G

GL

i

0

f

O0

Superscripts:

G

GL

T

$

!

Acronyms:

COSAL

spanwise coordinate

disturbance wave number in the
streamwise direction

disturbance wave number in the

spanwise direction

ratio of quiescent gas to injected gas

free-stream temperature, T2/T1

ratio of specific heats

displacement thickness of the

velocity profile in the x-direction

wave propagation angle of the
disturbance

coefficient of thermal conductivity

second coefficient of viscosity

dimensional coefficient of viscosity

coefficient of kinematic viscosity

complex density disturbance

time-dependent dimensional density

mean flow density

Prandtl number

complex temperature disturbance

viscous stress tensor defined in

equation (6)

= (5, q_, q-, })T

complex frequency

Gauss points

Gauss-Lobatto points

imaginary part of

mean flow quantity

real part of

free-stream quantity

Gauss points

Gauss-Lobatto points

transpose

dimensional quantity

differentiation with respect to y

compressible stability analysis code



MDSPD multi-domainspectraldiscretization
SDSPD single-domainspectraldiscretization
SPECLS spectralcompressiblelinearstability

code

Basic Equations for Parallel Shear Flows

Mean Flow

The mean flows utilized in these studies are

obtained from a spectral similarity solution for

compressible shear flows. The basic spectral collo-

cation technique is given in reference 6.

For the free shear flow analysis two gases are con-

sidered, with one of these gases taken as quiescent.

The effect of relative temperature is studied by vary-

ing the parameter _T : T2/T1, where 7"2 refers to

the free-stream temperature of the quiescent gas and

T1 the free-stream temperature of the injected gas. A

typical mean flow streamwise velocity profile is given

in figure 1.

Compressible Stability Equations

The basic equations governing the flow of a viscous compressible fluid are the Navier-Stokes equations.

These equations in terms of a three-dimensional Cartesian coordinate system (Xl, x2, xa) for a heat-conducting

perfect gas in dimensional form are

Op* O

_._. o( )+ + bP- + (3)
3

-* F*R*:F*p =

where u i is the velocity in the coordinate direction xi,

(4)

, l(0fi* 0fi;]

% : + (5)

rij = _ eij + (A ekk -- p*) 5ij (6)

and i,j = 1,2,3 according to the summation convention. Asterisks denote dimensional quantities and overbars

denote time-dependent quantities. In these equations _* is the coefficient of thermal conductivity; R*, the gas

constant; Cp, the specific heat at constant pressure (assumed constant); _*, the first coefficient of viscosity; A*,

the second coefficient of viscosity; and 5ij, the Kronecker delta.

In this study, x i = (x, y, z) and u i = (u, v, w). All velocities are scaled by Ue, the mainstream velocity, and

all lengths are scaled by 5*, the displacement thickness of the velocity profile in the x-direction. The Reynolds

number and Maeh number are given by
U_5*

Re - (7)
Pe

U_

M- v/__R,T e (8)

where Ue and Te are the kinematic viscosity and mean temperature in the free stream and -/ is the ratio of

specific heats. The Prandtl number a is assumed to be 0.70 and £* is evaluated by Sutherland's law.

If we assume that the base flow is a locally parallel boundary layer or free shear layer, then

u(x, y, z, t) = Uo(y) + _t(y) ei(az+_z-°Jt) (9)

3



v(x, y, z, t) = r,(y) e_('_+zz-_t)

w(x, u, z, t) = Wo(y) + _(_) #,_x+_z-_t)

p(x, u, z, t) = Po(y) + b(y) eiC_+Zz-_t)

T(x, y, z, t) = To(y) + _'(y) ei(c'z+Bz-_t)

(lO)

(11)

(12)

(13)

where Uo, Wo, Po, and To represent the steady unperturbed parallel shear layer (mean flow) properties;

quantities with tildes (-) denote complex disturbances; Vo(y) is assumed zero since the flow is parallel; Po(y)

is assumed constant across the shear layer; a and/3 are disturbance wave numbers in the x- and z-directions,

respectively; and co is the complex frequency. Equations (9) to (13) are substituted into equations (1) to (6),

the mean flow terms are subtracted, and quadratic terms in the disturbances are neglected. The resulting

system is the linearized compressible Navier-Stokes equations for the disturbance quantities given as follows

(ref. 7):

1 d#o,.,l,-,, _ (2U+A) 1 d_oD2(afi+O(v)+--_o_oolOLJtau+fl(v)+i P 1 (a2 +fl2)Dr,+ -uo _o (aU_°+ZW_°)D_"

Re (_m"+ zw')

_ rl iRe (,_Uo+ ZWo- _) + +----_A/2#°] (a2+ ,32)(o_+/:3m)
[ _oTo P.o J

d'°_W" (,_U'o+ ZW'o)Tod_a i _= o (14)
+ - + .v:') +

Po dTo _- o

( ) .oD25 + i 1 #o D(afi + _gz) 2#o+2p+)_ /Re (o_Uo a 2 ]uoTo + ZWo - _,) + + _2

+#lOD 5 Re (1 2 ) dpo ,. _#o 2# + _D_ + i _o 2_o + A -_o T°(c*u + _(v)

i d_,o(,_v"+ Zw')_ = o (15)
+ (ZUo_- ,x)_,oalTo

4

%' i
+ i'TM2(aUo + j3Wo - a_)} - _-(aUo + _3Wo - co)_" =Dr,+ i(_r, + _) - _v 0

1o
(16)



t W l
D2_ + 2(7- 1)M2a av° + 9A °D(a_ + B(z) + ----

a'z + _'_

iRea._ [ Re T'-2i(_-l)M2a(_U_o+_WIo) _+--#-0-o (7-1)M2(_Uo+ZWo-w)[9[ UoTo o

F ÷ ÷ ÷ ÷
LUoTo Uo dTo

uol d2-_#ffTl°2dT_uol ,,dUo ]- --T O ? = 0
dTo J

2T_oduo aWt° - _ U_°D(afz - _)
Uo dTo D? + 2(_/- 1)M2a a2 +/_

(17)

l d--_T_oD(a(v _3_) Re (aWro _3U_o)51 duo "aW' 13UIo)D_- + ....
D 2(a_v - _) + -_o-_o ( o - Uo a.to

! 2 n ][TO d Uo , ,,,, 1 duo

+ [yo-[_ot.VVo- _v')+ -Uo_o (_Wo- _v")]

[ iRe ] (18)- [-Zoo(_Uo + _Wo- _) + (_2 + _) (_c_- Z_) = o

where primes and D indicate differentiation with respect to y. The equation of state is

-- 7 (19)P+__
P= Po To

where Po is the mean flow density and _ the complex density disturbance. The boundary conditions are

_, _h + _z_, a_ - j3fi, ? = 0 ( y = 0, Boundary layer _ /
y _ -¢x_, Free shear flow/ (20)

!_, a_ + _, _ - _, _ --* 0 (y _ _)

Solution Technique

Equations (14) to (18) and (20) constitute an
eigenvalue problem for the complex frequency w, once
the disturbance wave numbers a and _ are specified.
Discretization of these equations in the y-direction

forms a generalized matrix eigenvalue problem, suit-
able for computer solution. Equations (14) to (18)
are essentially an eighth-order system; thus the eight
boundary conditions (eqs. (20)) are sufficient for solu-
tion, and no boundary condition is applied to the dis-
turbance pressure. Whatever discretization scheme is
used must respect this arrangement, if a truly accu-
rate solution is to be expected. Since stability anal-

yses are inherently much more sensitive to inaccura-
cies than a large-scale aerodynamic calculation is, an

artificial boundary condition could potentially im-

pact stability results.

Staggered Discretization Scheme

The discretization scheme used here is a spec-

tral collocation technique, using Chebyshev polyno-
mials as basis functions. The nodes of the variables

_, q+ = _ + _3z_, q- = a_ - f_, and _ are
located at the Gauss-Lobatto points (the extrema of
the last Chebyshev polynomial retained in the ex-

pansion (ref. 4)); the energy and momentum equa-
tions are collocated at these points. Thus discrete

boundary conditions may be imposed for these vari-
ables at both end points of the domain. The pressure
nodes are located at the Gauss points (the zeros of



the first neglected polynomial) of a Chebyshev se-
ries one order less than that used for the other vari-

ables; the continuity equation is collocated at these

points. Since no Gauss points fall on the boundary,

we are free of any requirement of providing an artifi-

cial numerical boundary condition for pressure, and

we have the proper balance of number of equations
and unknowns.

The far-field boundary of the discretized domain

is placed at a finite distance, typically 205* to 1005"

from the wall or shear-layer centerline. Extensive

sensitivity studies were performed to determine the
effect of this finite domain truncation.

Stretching is employed in the discretization to

improve resolution near the wall and centerline. For

the boundary layer, either of two stretching forms is
used:

or

Vm ,(C2 -- 1)clvc
YP = (C2 _2_C1 (21)

-- Yc]

YmaxC3Yc
(22)

YP -- l + C3 - Yc

where yp is the coordinate in the physical space
[0, Ymax], Yc is the computational coordinate (yc E

[0, 1], and CI, C2, and C3 are adjustable constants.

In equation (21) (72 controls the amount of stretching

and C1 the rate. The smaller the quantity (C2 - 1),

the stronger the stretching. In equation (22) C3
controls both the rate and the amount of stretching.

The smaller C3, the stronger the stretching. In this

work, C1 is either 4 or 6 and C2 ranges from 1.2 to

2.0; C3 is used between 0.01 and 0.03. For the shear

layer, equation (21) is used for stretching, yielding a

physical space of [-Ymax, Ymax] from Yc C [-1, 11.

Standard spectral collocation discretization for-

mulas (refs. 3 and 4) are used to form matrix dif-
ferentiation operators for both the Gauss-Lobatto

(5, q+, q-, _) and the Gauss (i5) grids, with the
selected stretching function incorporated. Mean flow

quantities from the spectral boundary layer code of

reference 6 are spectrally interpolated onto the new

mesh, and derivatives of these quantities obtained

using the differentiation operators. The generalized

matrix eigenvalue problem which results from this
discretization is of the form

AGLL_,,L$ + BGLLGL (¢) + I_Lp)

+ CGL (¢ + IGGLP)

+ EGL (_ + IGGLP)] (23)

6

for the momentum and energy equations, and

G p)BGLGIGGL ek + CG (IGL _ +

(24)

for the continuity equation, where A, B, (3, D, and

E are matrix coefficients derived from equations (14)
to (18), L denotes a spectral differentiation opera-

tor, the unknown vector is _ -- [_ q+ q- _]T,

and the vector P contains the disturbance pressure

io. Subscripts GL and G denote location at or op-

eration on Gauss-Lobatto and Gauss point grids, re-

spectively; I GL and IGL are spectral interpolation
matrices, from Gauss to Gauss-Lobatto points and
vice versa.

The unknown vectors _band P are collected into a

single vector, and the matrix equations (23) and (24)
are assembled into a large generalized matrix eigen-

value problem for input into a standard library rou-

tine for solution. A complex modified QZ algorithm

(ref. 8) is used to obtain the eigenvalues of the sys-

tem directly; this is referred to as a global search.

The most unstable eigenvalue is then selected and

used as an input to an inverse Rayleigh method to
purify the eigenvalue of the effects of roundoff error

and to obtain the solution eigenvectors. In all cases,

the global and local (Rayleigh-iterated) eigenvalues
agreed to better than eight decimal places. No effort

was made to optimize the standard routines used for

these tasks; thus, no computation times are quoted

or compared.

Spectral Multi-Domain Technique

The above discretization scheme is utilized in

the spectral multi-domain technique developed by

Macaraeg and Streett (ref. 5). This technique was
formulated to handle both advection- and diffusion-

dominated flow problems. Extremely large differ-

ences in discretization across an interface, through
domain size, number of points, and stretchings, have

been shown not to disrupt exponential-order accu-

racy (ref. 5). These advantages are crucial for solving

problems with widely disparate scales, as is the case

for flows undergoing transition or involving chemical
reaction (ref. 9).

A simple one-dimensional, two-region example

serves to illustrate the present method for interfacing

two collocation-discretized regions. Consider the fol-

lowing second-order, potentially nonlinear boundary-
value problem:

- vUzz = S(U)
U(-1) = a



where F, S, and U are functions of x, and subscript

x indicates differentiation with respect to x. We wish

to place an interface at the point x -- m and have in-

dependent collocation discretizations in the regions

x (1) E [-1, m] and x (2) E [m, 1]. Even though

the point x = m is an interior point of the prob-
lem domain, simply applying a collocation statement

there, utilizing a combination of the discretizations

on either side, will not work; the resulting algebraic

system is singular, because the spectral second-

derivative operator has two zero eigenvalues; thus

the patching together of two spectrally discretized

domains yields potentially four zero eigenvalues in
the overall algebraic system. Two of these eigenval-

ues are accounted for by imposition of boundary con-

ditions, and one by continuity of the solution at the

interface, but one zero eigenvalue remains in the sys-

tem. To alleviate this difficulty, a global statement

of flux balance is used. Rewriting equations (25) as

[G(U)]x = S(U) (26)

where the flux is

G(u) = F(U) -  ,Ux (27)

and then integrating equation (26) from -1 to 1

results in

G(U) x=l - G(U) x=-I -b [G] x=rn =/11 S(U) dx

(28)

If the jump in flux at the interface [G] is zero, then

equation (28) may be written

G(U) x=_l fml S(U)dx=G(U) z=l - flmS( U) dx

(29)

The statement of global flux balance across the two

regions, along with the assumption that the solu-

tion is continuous, provides the condition necessary
to close the equation set which results from spectral

discretization of equations (25) in two regions. Note

that the left side of equation (29) involves the dis-

cretization in the region x (1) E [-1, rn], while the

right side involves the region x (2) E [m, 1]. Since

spectral collocation discretization strongly couples all

points in their respective regions, equation (29) cou-

ples all points in both discretizations.
Note also that no statement is made concern-

ing whether or not equations (25) are advection- or
diffusion-dominated. Equations (25) are considered

scalar equations here, although the above is extend-

able to a system.

A thorough treatment of the spectral multi-

domain technique for compressible flow stability can
be found in reference 10.

Verification

Boundary Layer

For verification, calculations were performed for

the stability analysis of compressible two-dimensional

similarity boundary layer profiles. A spectral mean

flow code modified for compressible flow is used for

this purpose (ref. 6). The cases to be presented are
for Moc = 0.00001, 4.5, and 10, assuming adiabatic

flow. Comparison with second-mode calculations by

Mack (ref. 2) is also presented.
Initially a low Mach number, essentially incom-

pressible case (Moc= 0.00001, Te = 520°R, Re =

2200) is analyzed. A resolution study using SPECLS

is shown in table I(a), which presents the eigen-
values versus number of grid points. A similar study

is given for COSAL, a finite difference compressible

stability code (ref. 7), in table I(b). Accuracy of the

growth rate to 3 significant digits is obtained with
45 points in the spectral code; COSAL requires ap-

proximately 500 points for equivalent accuracy. It
is of interest to note that converged values of growth

rate differ in the third decimal place between the two

codes. An independent calculation by L. M. Mack

(Jet Propulsion Laboratory) agreed to four decimal
places with SPECLS. Corresponding eigenfunctions

for fi are given in figure 2 for both codes. The profiles

are virtually identical.

A higher Mach number boundary layer profile

perturbed by a three-dimensional disturbance is an-

alyzed next. Conditions are Moo = 4.5, Te = 520°R,
and Re = 10000. A resolution study for the eigen-

value computations is given in table II for SPECLS
and COSAL. Accuracy of growth rate to 3 signifi-

cant digits is obtained with the spectral code using

81 points; in table II(b), COSAL requires approx-
imately 800 points for equivalent accuracy. Eigen-

functions for fi are again shown for each code in

figure 3. A multi-domain spectral discretization

(MDSPD, ref. 5) in SPECLS with two domains

requires one-third the number of points to obtain

accuracy equivalent to that obtained with the

single-domain spectral discretization (SDSPD), as il-
lustrated in table III. The savings is significant con-

sidering that the number of operations in SPECLS

varies as the cube of the number of points.

Insensitivity of these solutions to the locations of

the far-field boundary is next illustrated with the

MDSPD. The compressible case discussed above
utilized an outer extent of 305*. The same case was

run with this far-field boundary distance halved and



doubled.Resultsaregivenin tableIV. A factor-of-
fourchangeinouterextentbasicallydoesnotchange
_v:the phasespeedis constantto sevensignificant
digits, and the growth rate is unchangedfor five
significantdigits.

First andsecondmodeeigenfunctionsfor Moc =

10, Te = 90°R, and Re = 100000 are compared with
compressible inviscid modes of neutral subsonic so-

lutions (ref. 2). Plotted in figure 4 are the pressure
eigenfunctions of the first mode from SPECLS and

reference 2, respectively. The value of cr is 1.844.

Figure 5 displays similar plots for the second mode,

with a = 4.9877. Nondimensionalizations and prop-

erties differ for these comparison cases. Of relevance

are the distinctive shapes of these _ modes; that is,

the number of zeros in _5 is one less than the mode

number (ref. 2). The spectral code utilized 99 points

for this case. A further comparison between Mack's

calculations and SPECLS for equivalent flow proper-
ties and viscous flow at Moo = 4.5 and Te = 300°R

gave agreement to three significant figures in growth

rate and five significant figures in phase speed.

Shear Layer

A further test of SPECLS is presented for a paral-

lel shear flow. For verification, results are compared

with those obtained by Blumen (ref. 11) for shear-

layer instability of an inviscid compressible fluid.

The velocity profile whose stability is investigated

is given in dimensionless form by

Uo = tanh y (30a)

Wo = 0 (30b)

The basic thermodynamic state is assumed con-

stant (ref. 11). Table V displays maximum growth

rates determined by Blumen for a range of Mach

numbers. The corresponding growth rates from

SPECLS (Re = 10000) are also displayed and were

obtained using at most 81 collocation points. To de-
termine the maximum growth rates using SPECLS,

a plot of growth rate versus a is displayed in figure 6

for Moo = 0.5 and M_ = 0.9. The peaks occur at

the growth rates given in table V for Mc¢ = 0.5 and

Moo = 0.9. Note in figure 6 that the lower Mach

number flow is unstable to a larger range of wave
numbers.

It is interesting to note the effect of Reynolds

number on the maximum growth rate. Figure 7

displays a plot of a versus _v for Moo -- 0.9 and

Re -- 100. The maximum growth rate increases

with increasing Reynolds number indicating that this
shear-layer profile has an inviscid instability.

The real and imaginary parts of the eigenfunc-

tions 5, 5, and/3 for maximum growth rate are given

in figure 8 for M_ = 0.9 and Re = 10000. Each

eigenfunction plot is normalized to one. Note that

the real part of _ displays a small structure about

the origin. This feature disappears as the neutral

curve is approached, as illustrated in figure 9.
The manifestation of this structure is reflected

in plots of magnitude and phase for fi as given in

figures 10 and 11. Note the pronounced peak in the
magnitude which decreases radically as the structure

of fi about the inflection point disappears (fig. 10).

As indicated in figure 11, the phase changes when the

structure is prominent (_ = 0.1) from the smooth

phase plot when the structure has disappeared (_ =
0.4). Viscosity appears to widen the appearance of

this structure as exhibited in figure 12, which is a

progression of _ plots for increasing _ (Re = 100).
A mean flow profile given by

Uo = 0.5(1 + tanhy) (31)

is also investigated (ref. 12) and verified with the
incompressible result of reference 9. This growth

rate should be multiplied by 2 to compare with the

tanhy profile growth rate since the amplitude of

equation (31) is one-half the value of equation (30a).

The incompressible growth rate for this profile is also

given in table V for comparison. Eigenfunction plots
obtained from analyzing it are given in figure 13.

Sensitivity Analysis

When interpreting the results of a linear stability

analysis, one must realize the sensitivity of these re=

suits to the accuracy of the mean flow with respect to

the numerical scheme as well as properties assumed

in the mean flow. To elucidate these points, we ex-
amine the sensitivity of calculated growth rates to

the accuracy of the mean ftow and assumed thermo-

dynamic properties.

Consider a boundary layer flow with Met =

4.5, Te = 300°R, A = (-2/3)#, a -- 0.6, and

/_ = 1.0392. This flow defines case 1 in table VI. (A

lower Te than in table II(a) is chosen to emphasize

the extreme sensitivity of results to thermodynamic

properties even at these relatively low temperatures.)
A less than 3-percent change in the Prandtl num-

ber for this flow causes a 20-percent change in the

calculated growth rate. Even more dramatic is the

effect of changing the free-stream temperature (Te)
by 42 percent, which causes a 30-percent change in

growth rate. A lesser effect, but nonetheless impor-

tant for code validation purposes, is the effect of bulk

viscosity illustrated by comparing case 4 with case 1.
The effects of these properties are of course intensi-

fied at higher temperatures. Further points of inter-

est are the effects of the numerical accuracy of the



meanflow,aswell asthe interpolationschemeem-
ployedto transfermeanflowvaluesontotheSPECLS
grid. Theselatter effects,althoughminimal,cumu-
lativelycausea differencein the secondsignificant
figureof thegrowthraterelativeto case1.

Also relevantis the effectof Prandtl number
on the generalizedinflection points (definedby
(Uto/To)' = 0) for shear flows, since these flows
are characterized by inflectional instabilities. For

demonstration, we compare plots of (U1o/To) ' versus

y in figure 14 corresponding to two shear-layer mean
flows with Moc = 5 and /_T ---- 0.6. The solid line

represents a mean flow with a = 0.7 and Sutherland-

law viscosity, representative of a typical profile in

the present report. The dashed curve is for a -- 1

and # = T, representative of a profile from refer-
ence 13. Note that the number and locations of in-

flection points in these two cases are vastly different,

which has important implications for studies involv-

ing overly simplified constitutive relations. Multiple
inflection points are found not to occur for as high
a Mach number as 10 assuming the more realistic

constitutive relations.

Stability of a Compressible Shear Layer

The spectral stability code is now used to ana-

lyze the stability of a compressible shear layer. This
mean flow is a spectral collocation similarity solution
for free shear flows and is studied to understand the

impact of transition on fuel-air mixing efficiency in

scramjet combustors. It has been observed experi-

mentally that the mixing efficiency is decreased four-

fold in the range from Mach 1 to 4 (refs. 14 and 15).
The cause of this trend is unknown. However, it is

well-known that turbulent mixing is many orders of

magnitude faster than laminar. Ideally one would
like to be able to manipulate the downstream evolu-

tion of shear layers to enhance mixing. The initial

stages of shear-flow instabilities are driven by linear
mechanisms. Understanding the growth and prop-

agation of the disturbance in these early stages not

only would allow a better understanding of the onset
of transition but also would allow initiation of the

transition process in a numerical model so that the

physics might be systematically studied. This study

investigates a range of Mach numbers, gas tempera-

tures, and disturbance wave numbers. Unless other-
wise stated, Re = 10 000. The mean flow in all cases

involves a jet being injected into a quiescent gas.

Effect of Mach Number and Temperature on

Stability

For the cases under study, lower Mach numbers

correspond to a more unstable mean flow than higher

Mach numbers do. This point is illustrated in fig-

ure 15, which displays growth rate versus a for a

range of Mach numbers. The wave propagation an-

gle _ is defined as

0 = COS-1 o_
(O_2 +/_2)1/2 (32)

The value of this angle is chosen to be 60 ° since

disturbances that are propagated at an angle of 50 °

to 60 ° relative to the direction of flow are known

(ref. 9) to experience the greatest amplification. As

can be seen in figure 15, the lower the Mach number,
the wider the band of wave numbers that can cause

the flow to become unstable.

The stability characteristics of the shear flow are

also quite sensitive to the temperature difference be-

tween the injected and the quiescent gas. Figure 16
illustrates this sensitivity. The plot displays growth

rate versus a for a wave propagation angle of 60 ° and

Mach 3 flow. The three temperature cases given in

the plot are cold injection (500°R) into a hot quies-

cent gas (2500°R), /_T = 5; cold injection into a cold

gas (500°R), /3T --- 1; and hot injection (2500°R)
into a cold quiescent gas (500°R), fiT = 0.2. The

condition relevant to the scramjet is 3T ----5, since in

this context a cold fuel is injected into a much hotter

airstream (ref. 16). Mixing efficiency is greatly en-

hanced by transition, so the greater instability of the

shear layer at this temperature is a favorable scenario
for increased fuel-air mixing. Cold injection into a

cold quiescent gas is less unstable, and hot injection

into a cold gas is the most stable of these cases. It

seems that if the fuel temperature increases relative

to the airstream, its stability is enhanced. This ob-

servation has important implications. For example,

cooling an aircraft by running fuel under the skin hin-

ders mixing efficiency since heating the injected fuel
decreases the range of wave numbers that can induce

an instability necessary for flow transition. The im-

pact of temperature differential on stability results

depends heavily on the assumed temperature pro-
files. Contrasting the above effects of temperature

on stability with previous work (ref. 13) reveals dis-

crepancies because of overly simplified temperature
profiles and constitutive relations assumed in these
earlier studies.

Effect of Mach Number, Temperature, and
Wave Number on Disturbance Structure

Three-dimensional modes. It is not surprising that

distinct differences in the shapes of temperature dis-

turbance eigenfunctions occur as the gas tempera-
tures are varied. To illustrate this point, figure 17

displays temperature disturbance eigenfunctions of

9



meanflowswhich differ only in the temperature

of the injected gas with respect to the quiescent

gas. The Mach number of the injected gas is 2 and

0 = 60 ° , with a = 0.0862 and /3 = 0.1493. The

qualitative differences essentially reflect the effects

of viscosity which varies because of the different tem-

perature distributions for each case.

Further, the disturbance eigenfunctions signif-

icantly tighten in structure as c_ increases; thus

greater resolution is required for the SDSPD. A pro-

gression of eigenfunction plots for increasing _ (0 =

60 ° ) is given in figures 18 and 19.

Difficulties in resolution similarly occur for higher
Mach number disturbances. The SDSPD in SPECLS

had difficulty resolving eigenfunctions beyond

Mcc = 3.75 for _ = 5 and as early as M_ = 3

for /3T = 0.2. Restrictions on the allowable stretch-

ing for single-domain spectral methods contribute to

this difficulty. The MDSPD in SPECLS is especially

useful in these cases. Examples of its usage for cases

requiring very severe stretchings are given later.

To illustrate the effect of increasing Mach num-

ber on the three temperature cases of figure 16, plots

of pressure disturbances are given in figure 20. The

wave propagation angle is 60 ° , and the disturbances

correspond to comparable growth rates (approxi-
mately 10 -2) in each case. Note that for/3 T = 0.2

(fig. 20), an additional lobe develops at Mcc = 3. Be-
yond Moc = 3 the single-domain code has difficulties

resolving disturbance eigenfunctions. Contrast fig-

ure 20(a) with figure 20(b), for/3 T = 5. The _ eigen-
functions maintain a single lobe and are one-signed.

Cases are resolved up to Moc = 3.75 (note that the

spatial scale is for the interval [-10, 10], though the

actual extent is [-100, 100]). Similarly, the structure

at _3T = 1 (fig. 20(c)) is resolvable to Moc = 3.75

although the real part of i5 differs from the preceding
C ase.

Two-dimensional modes. The above studies in-

volve three-dimensional disturbances with a wave

propagation angle of 60 °. Preliminary results indi-

cate that two-dimensional disturbances (/3 = 0) ex-
hibit similar trends; however, difficulties in resolv-

ing eigenfunctions with the SDSPD occur at lower

Mach numbers. Again at higher a, disturbance

eigenfunctions tighten radically beyond the limit at

which a single-domain spectral method can resolve,

and cases become harder to resolve as /3T decreases

(cooling). This observation is demonstrated in fig-

ure 21, which plots a sequence of 15 and _ eigen-

functions for increasing (_. The mean flow corre-

sponds to M_ = 1 and Re = 10000 with /3T = 0.2.

Note the extremely tight structures in io and _ as

10

increases. Again note that while ? is plotted on

the interval [-10, 10], the actual spatial extent is

[-100, 100]. Numerical oscillations in _ for a = 5
and 6 are quite pronounced, indicating breakdown of
resolution.

A MDSPD is ideal for flows with radical scale

differences (ref. 9). To illustrate this point, _ and

eigenfunctions obtained from a multi-domain dis-
cretization are displayed in figure 22 for Re -=- 10 000

and a = 5, the case discussed previously. Adjacent
to the MDSPD results are the SDSPD solutions for

;5 and _. The multi-domain solution remains oscilla-

tion free. The number of points in each discretization

is roughly 100; however, the multi-domain solution

utilizes three domains, with 41 points in the center

domain between -0.5 and 0.5, 25 points in the left
domain between -100 and -0.5, and 37 points in

the right domain between 0.5 and 100. The plot of

the pressure disturbance for the entire spatial extent

[-100,100] as obtained from the multi-domain solu-
tion is given in figure 23, to illustrate the fineness of
the structure which is resolved.

The preceding case (a = 5) is found to be re-

solvable by the SDSPD, but only after considerable
trial and error stretching of the mesh for a vari-

ety of resolutions. The important point is that the

MDSPD is quite robust and gives accurate eigen-

values over a wide range of stretching parameters.

This observation is illustrated in table VII, which

lists a range of stretching parameters and corre-

sponding phase speeds and growth rates again for

Mcc = 1, Re = 10000, /3T =- 0.2, and o = 5. Both
the SDSPD and the MDSPD for this illustration uti-

lized 99 points with the same outer extent. Note that

for the SPSPD cases changing the stretching param-

eter by approximately 25 percent causes about a 10-

percent change in phase speed and over a 50-percent

change in growth rate. Contrast this sensitivity with
the MDSPD. The stretching parameter is allowed to

vary 100 percent in the center domain (three domains
are utilized with interfaces at +l). The phase speed

has changed by less than 1 percent and the growth

rate by only 6 percent. This robustness is extremely

important since one usually has no idea of the value

of the phase speed or growth rate. In addition, one
needs to determine whether the disturbance mode is

spurious--by measuring its persistence over a wide
range of resolutions.

Supersonic Disturbances

As mentioned earlier, the disturbance eigenfunc-

tions become increasingly complex as Mach number
is increased. These higher Mach number cases are

unresolvable by the SDSPD. To illustrate, a series



of _5and_ eigenfunctionscalculatedby the SDSPD
stability codeare displayedin figures24 and 25,
respectively,for a disturbancewaveangleof 60°.
Note that at Moo = 3.5 the injected gas side of

the disturbance begins to take on an oscillatory na-

ture; at Moo -- 3.75 these oscillations are more pro-

nounced. It is well-known that for supersonic dis-

turbances the eigenfunction structure is oscillatory

(ref. 12). (A supersonic disturbance occurs when the
wave velocity of the disturbance relative to the lo-

cal flow, in the direction of wave propagation, has

a magnitude greater than the speed of sound.) The

MDSPD is able to capture the structure of these su-

personic modes with relative ease. Figure 26 displays

two unstable supersonic modes that are associated

with the instability of a Much 4, _T ---- 1, free shear
flow. The disturbance wave numbers are a -- 0.30416

and _ = 0.2017. The MDSPD involves three do-

mains: 105 points on the oscillatory side, 41 points

in the inner domain, and 25 points in the outer do-

main where the profile is smooth. Interface locations

are +1. Note further the level of complexity of the

eigenfunctions of this case. Figure 27 is a plot of
for both modes on a full scale from 100 to -100

and a greatly expanded scale from 10 to -10. The

center structure is an added complexity which also

requires adequate resolution and further illustrates
the necessity of a flexible discretization scheme like
a MDSPD.

The Mach number at which no unstable subsonic

modes exist (i.e., all unstable modes are supersonic)

is called the critical Mach number (Mc). Figure 28

displays a plot of Mc versus BT for both two- and

three-dimensional (/9 = 60 °) disturbances. It is
found that Mc for a three-dimensional disturbance

at a given f_T is equal to the two-dimensional Mc

multiplied by the reciprocal of the cosine of the

propagation angle of the three-dimensional mode.

An analysis from inviscid theory of compressible

shear flows substantiates this relationship. A quan-

tity G, defined as follows (ref. 13), determines the
character of the flow:

"'" /33/
-- cos 2 0

It can be shown (ref. 13) that the point where modes
appear supersonic occurs at G = 0. We solve for M

using this condition:

M- _TC°S0

Uo "_ (34)

For a two-dimensional mode 0 = 0, so that

M- fiT

The first occurrence of this relationship is the critical

Much number. Therefore, for a given mean flow the

following is true:

cos 0
(Mc)3D Uo - ("_/_)3D
(_:f/ 1
_,2D Go- (_/_)_D

(35)

It was found that at the critical Mach number for a

given mean flow

_z _ (36)(_)3D (_)2D

so that

(Mc)3D = (Mc)2D (cosO) (37)

Conclusions

The first spectral collocation linear stability code

for compressible flow (SPECLS) is presented. The

accurate discretization (staggered pressure grid) can
be employed in nonlinear simulations. Verification

cases for high-speed boundary layers indicate an

order-of-magnitude reduction in the number of points

required to obtain equivalent accuracy in growth
rates with a finite difference formulation. In addition,

a multi-domain spectral discretization (MDSPD) in
SPECLS is found to require a factor of three fewer

points, which is significant since the operation count

of the spectral formulation varies as the cube of the

number of points. The highly irregular structures
of the supersonic modes are easily resolved by a

MDSPD, which is shown to be highly robust over a

wide range of stretching parameters and resolutions.

The stability analysis of a compressible shear flow

is presented. The study indicates that for subsonic

disturbances stability of mixing layers is enhanced

by viscosity, increasing Mach number, and higher

temperatures of the injected gas. The critical Much
number for three-dimensional disturbances is shown

to be higher than for two-dimensional modes, the

proportionality constant being the inverse of the
cosine of the propagation angle. The exact value

of this Mach number depends on the differential

temperature between the two gases: The lower the

value of _T, the lower the Mach number at which

supersonic modes appear.
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Table I. Temporal Eigenvalues for Low Mach Number, Incompressible Case

[Mc_ = 0.00001, Te = 520°R, Re = 2200, a = 0.2, _ = 0]

(a) Calculated With SPECLS (SDSPD)

Number

of

points

35

39

41

45

65

95

200

_QT

5.972895550 x 10 -2

5.982453898 x 10 -2

5.984158831 x 10 -2

5.983655920 x 10 -2

5.983575125 x 10 -2

5.983575084 x 10 -2

5.983575084 x 10 -2

wi

4.163678340 x 10-3

4.051750872 x 10-3

4.016799466 x 10-3

4.022189152 x 10-3

4.023290767 x 10-3

4.023291203 x 10-3

4.023291203 x 10-3

(b) Calculated With COSAL

Number

of

points

100

200

300

500

1025

1200 a

5.983647688 x 10-2

5.981935522 × 10-2

5.981623402 x 10-2

5.981464629 x 10-2

5.981396790 x 10-2

5.981375400 x 10-2

aWith Richardson extrapolation.

¢zi

3.96449684 x 10-3

4.004225579 x 10-3

4.01151043 x 10-3

4.015224481 x 10-3

4.016810997 x 10-3

4.017305399 x 10-3
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Table II. Temporal Eigenvalues for Higher Mach Number Case

[M_ = 4.5, Te = 520°R, Re = 10000, a = 0.6, _ = 1.0392 l

(a) Calculated With SPECLS (SDSPD)

Number

of

points

45

51

65

81

95

120

151

2OO

_QT

0.49578803

.49591572

.496217679

.496093364

.496106105

.496104826

.496104845

.496104846

wi

4.36603960 × 10 -3

3.749838454 × 10 -3

3.727396074 x 10 -3

3.761833505 × 10 -3

3.763494422 x 10 -3

3.764796852 x 10 -3

3.764820857 x 10 -3

3.764820881 × 10 -3

(b) Calculated With COSAL

Number

of

points

211

513

813

1025

1500

1500 a

_T

0.496035465

.495990048

.495984488

.495983122

.495981891

.495980770

a With Richardson extrapolation.

wi

3.720663427 x 10 -3

3.688194736 x 10 -3

3.684224749 x 10 -3

3.683247436 × 10 -3

3.682367822 x 10 -3

3.681512173 × 10 -3
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TableIII. TemporalEigenvaluesCalculatedWith MDSPDin SPECLS

[Moc= 4.5, Te = 520°R, Re = 10000, a = 0.6, /3 = 1.0392]

Number of points

First

domain

25

31

37

Second

domain

17

25

25

Total

42

56

62

CA)_-

0.496102327

.496104982

.496104984

3.764737236 × 10-3

3.764889142 × 10-3

3.764890672 × 10-3

Table IV. Effect of Far-Field Boundary Location on

Temporal Eigenvalues Calculated With MDSPD in SPECLS

[Moo = 4.5, Te = 520°R, Re = 10 000, c_ = 0.6, _ = 1.0392]

Number

First

domain

37

37

37

of points

Second

domain

21

31

51

Far-field

boundary,
_* units

15

30

60

(,t) r

0.496104813

.496104828

.4961O4848

¢zi

3.764828351 × 10-3

3.764822175 × 10-3

3.764817702 × 10-3

Table V. Maximum Values of a_i

Mach

number

0

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0

O_

0.445

.433

.426

.417

.409

.397

.370

.326

.279

.208

.000

Uo = tanh y

(ref. 11)
0.190

.187

.181

.171

.158

.141

.122

.101

.078

.055

.000

w i for-

Uo = tanh y

(SPECLS)
0.18954

.18736

.18112

.17105

.15760

.14101

.12180

.10012
.07760

.0545O

.00000

Uo = 0.5(1 + tanh y)

(SPECLS)
0.094688
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Table VII. Effect of Stretching Parameter C2 in SPECLS

[Moc = 1.0, Re = 10000, fiT----0.2, o_----5, _ = 0]

(a) Single-domain: 99 points on [ 100, 100]

Stretching

parameter
1.1

1.2

1.3

1.4

_r

1.47179

1.49883

1.49806

1.57814

¢zi
0.272236

.159461

.158226

.266635

(b) Multi-domain: 17 points on [-100, -1], 65 points on [-1, 1], 17 points on [1, 100]

Stretching

parameter
1.6

2.0
2.2

4.0

(,,Q1.

1.497268

1.496913

1.497146

1.496359

0.167511

.159498

.158781

.156986
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Figure 1. Streamwise-velocity profile of mean flow for free shear layer.
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(b) Calculation by COSAL.

Figure 2. Streamwise-velocity fluctuation _ for a -- 0.2, fl = 0, Moo = 0.00001, Re = 2200, and

Te = 520 °R.
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Figure 3. Streamwis_velocity fluctuation fi for a = 0.6, _ = 1.0392, Moo = 4.5, Re = 10000, and
Te= 520°R.
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Figure 4. Pressure fluctuation 15 for the first mode of neutral subsonic solution at a = 1.844, _ = 0,
Mc¢ = 10, and Te = 90°R.
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Figure 5. Pressure fluctuation _ for the second mode of neutral subsonic solution at _ -- 4.9877, _ -- 0,
Mc_ = 10, and Te = 90°R.
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Figure 6. Effect of Mach number on growth rate versus wave number a for the hyperbolic tangent mean flow

profile. Re = 10000.
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Figure 7. Effect of Reynolds number on growth rate versus wave number a for the hyperbolic tangent mean

flow profile. Moo = 0.9.
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